
A Gentle Introduction to Slightly Advanced
Statistical Methods for Behavioral Research

Himanshu Mishra 1

July, 2015

1For more information email: himanshu.mishra@utah.edu



Contents

1 Introduction and Software Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Ingredients of Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The use of Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 How can I calculate Power? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Monte Carlo Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 2x2 ANOVA Power Simulation . . . . . . . . . . . . . . . . . . . . . . 13
2.5 The fallacy of post-hoc Power Analysis . . . . . . . . . . . . . . . . . . . . . 15

3 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 So what are better alternates to using the 3SD rule? . . . . . . . . . . . . 17

3.1.1 Median Absolute Deviation . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Boxplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 How can one determine outliers in boxplot? . . . . . . . . . . . . . 21
3.3 Outliers in Multivariate data . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Mahalanobis Distance based methods . . . . . . . . . . . . . . . . . 23
3.3.2 Robust outlier detection methods . . . . . . . . . . . . . . . . . . . . 25
3.3.3 Working with data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Confidence Interval, Bootstrapping, and Effect Size . . . . . . . . . . . . . . . 27
4.1 Confidence Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Caution with the CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Effect Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Effect Size for factorial ANOVA . . . . . . . . . . . . . . . . . . . . . 29
4.2.3 Effect Size for categorical data . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Confidence Interval around Effect Size . . . . . . . . . . . . . . . . . . . . . 30
4.4 A Short introduction to Bootstraping . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Bootstrap CI around Effect Size . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Quantile Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 What is Quantile Regression? . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 Estimating Quantile Regression . . . . . . . . . . . . . . . . . . . . . 37

5.2 How to use and interpret quantile regression? . . . . . . . . . . . . . . . . . 38

A Some Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.1 Fundamental Misconceptions about p-values . . . . . . . . . . . . . . . . . 41
A.2 p-value and replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



3

A.3 Descriptive vs Inferential Statistics . . . . . . . . . . . . . . . . . . . . . . . . 42
A.4 PDF vs CDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



4



Chapter 1

Introduction and Software Basics

These notes are prepared for a summer seminar on statistical methods taught at the
University of Utah in summer 2015. Methods discussed in this seminar are essential for
experimental work but are not readily accessible. Many times such methods are taught
across various statistics courses and prevent researchers from seeing how they can be
easily used in their research papers.

This seminar assumes that you have taken some basic experiment data analysis course
and are familiar with t-test, ANOVA etc.

The topics we will cover are power analysis, outlier detection, effect size, bootstrap effect
size, quantile regression, fallacies of NHST, regression discontinuity designs, bayesian
t-test and bayesian anova. These notes currently don’t cover details of regression
discontinuity designs, bayesian t-test and bayesian anova.

Each of the topics is accompanied with an software code. We will be using R in this
seminar so please install R from https://cran.r-project.org/. If you are new to
R read "A (very) short introduction to R" http://cran.r-project.org/doc/contrib/
Torfs+Brauer-Short-R-Intro.pdf

To make your R experience simpler, feel free to use R Studio (https://www.rstudio.
com/products/RStudio/)

In only a few occasions (e.g., Monte Carlo Power Analysis) we will be using Python.
The best place to install Python is Anaconda from http://continuum.io/downloads.
If you want to learn more about Python, here is a good introductory book http:
//www.kevinsheppard.com/images/0/09/Python_introduction.pdf

A caveat: Most of the material in these notes is compiled from various sources. All
efforts have been made to cite appropriate sources. Any omission to cite a source is not
deliberate.
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Chapter 2

Power Analysis

What is Power Analysis ? Let’s first understand some very simple concepts that we
will be using throughout the course. It is always easier to understand them through an
example. Imagine we ran a study to find out if 20% price discount is more preferred
than 20% bonus quantity. We chose soap as our stimulus and recruited 60 participants.
30 were randomly assigned to the price discount condition (P condition) and 30 to
quantity discount condition (Q condition). Our dependent variable was people’s
willingness to buy soap on a 1-7 scale. We found out that in the P condition the mean
willingness to buy was 5.9 and in the Q condition it was 4.9, p < .05. Therefore, in this
sample we find that price discounts are more preferred than quantity discounts. Now
the question is does this result mean that consumers as a whole would prefer price
discounts to quantity discounts? In other words, does our sample (of 60 participants)
provide us any reliable information about the population (all consumers who are
exposed to price/quantity discounts)?

Samples are subsets of the population. While samples are drawn from the population,
what we see in samples may not reflect what is happening in the population. Why?
Samples don’t always capture the true nature of the population because of Sampling
error . Whenever we draw a subset of population we run the risk of introducing
sampling error. One way to think about sampling error is to understand it as uncertainty
in our conclusion from the sample. Therefore, two possible conclusions about our study
can be drawn:

Conclusion 1: The mean willingness to buy soap with price or quantity
discount are actually the same in the population. Sampling error is respon-
sible for the difference observed in the study.

Conclusion 2: The mean willingness to buy soap with price discount is actu-
ally large compared to the quantity discount in the population. Sampling
error is not responsible for the difference observed in the study.

Conclusion 1 is commonly referred to as the null hypothesis1 and Conclusion 2 as the
alternate hypothesis .

Now let’s consider two possible realities at the population level. These realities exist
regardless of what our sample says.

1The null hypothesis can be stated in many different ways. For instance, we can have a null stating
that the difference between the P and Q conditions is .5.
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Reality1: The willingness to buy soap with price or quantity discount are
not different.

Reality 2: The mean willingness to buy soap with price discount is actually
very large .

So what happens when our conclusions don’t match with the reality? Simple answer:
Type I and Type II errors ,. Let’s understand why.

Reality 1 (no difference) Reality 2 (yes difference)

Conclusion 1(no difference) © p = 1− α § Type II error, p = β

Conclusion 2 (yes difference) § Type I error, p = α © power = 1− β

This table says the following: if reality 1 matches with conclusion 1 then we are happy
©. This is the reason we set α > .95 and thus p < .05. In other words, we are trying to
avoid Type I error . So when we say p < .05 we are implying that the probability of
incurring Type I error is less than .05. One way to understand this is to say that we
want to minimize the chance of concluding that price discount is more preferred than
quantity discount (conclusion 2) when in reality there is no difference between them
(reality 1).

Type II error is drawing conclusion 1 (no difference) when a difference actually exists
(reality 2). Just like α plays an important role in assessing the chance of committing a
Type I error, β plays an important role in assessing the chance of committing a Type II
error. β tells us what are the chances that we would conclude that no difference exists
between price discount and quantity discount conditions when in reality there is a
difference between them.

Power is simply 1 − β. As you can guess, we ideally want to keep β low so that the
power of our study is high. A more formal way to define the power of a study is the
following: It is the probability of rejecting the null hypothesis (conclusion 2) when the null is
really false (reality 2).

2.1 Ingredients of Power

What influences the power of a study? Actually, it is quite straightforward.

1. Sample Size: Higher sample sizes increase the power of a study.

2. Effect Size: Essentially effect size is [standardized difference/magnitude of a
phenomenon] (see more details in the note on Effect Size). Let’s consider our
study. If we assume that standard deviations of P and Q conditions are 1, then
cohen’s d (one of the commonly used effect size measure) for our study would be
1 2. The important thing to remember about effect sizes is that they don’t change
with changes in the sample size.

2Cohen’s d = Mean1−Mean2
s where s is the weighted average of each group’s standard deviation.
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3. p value: if we keep Sample size and Effect size constant, a study will have less
power if p < .01 than if p < .05. In other words, your study will have higher power
if you lower the standards to reject the null hypothesis (i.e., increase the p value).

From a practical standpoint, if a researcher wants to increase the power of a study
usually his best bet is increasing the sample size. Why? Because p values are implicitly
agreed upon in research areas (like p < .05) and effect sizes depend a lot on the research
questions one is trying to answer. Thus, it is easier to change the sample size than p
value and effect size.

2.2 The use of Power

The most common use of power analysis is in calculating the sample size of a proposed
study. How could you do that? Without going into many technical details, we know
that power depends on sample size, effect size and p value. If we provide values of
effect size, α value (i.e., 1− p), and the power we want our study to have (i.e., 1− β), we
can calculate the sample size we need to have in our proposed study.

You must be wondering that if I know only α (normally it is .05), how can I provide
values of effect size and β? With effect size it almost seems like a catch 22 situation. I
need effect size to calculate the sample size of a proposed study, but how can I know the
effect size if I have not even run the study? There are 3 ways to address this problem:
a) run a pilot study and calculate the effect size, b) if you have already run a study, use
its effect size, c) if the effect you are testing is based on some existing theory, see effect
sizes of existing studies related to that theory. Use the average effect size observed as
your input.

Unlike the value of α there is no clear guideline for the value of β. However, you can
use some thumb rules. Less than .50 power is a bad idea. .90 and above is really good
but to achieve that level of power, your sample size needs to be very high (sometimes
it is practically impossible to collect data from such large samples). An arbitrary yet
practical advice is to keep power around .80.

Remember, your sample size calculation based on power analysis are as good as
the value you use for the effect size. So in reporting, be fully transparent about
how you chose the effect size value.

Considering all the assumptions that need to be made, sample size calculations
are essentially hypothetical.

2.3 How can I calculate Power?

If you want a one-stop-shop solution for most (not all) of your power analysis needs,
you can use the stand-alone program G*Power (http://www.gpower.hhu.de/)

R has some useful packages that will perform power analysis for standard designs (see
R package ‘pwr’ http://cran.r-project.org/web/packages/pwr/index.html). Here is a
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simple example. If the data from our discount study is MeanP = 5.9, SDp = 1, MeanQ =
4.9, SDQ = 1 then the effect size will be 1 (as we discussed earlier). The R code for the
power analysis with the proposed sample size of 40 will be

require(pwr)
pwr.t.test(d=1,n=40,sig.level=0.05,alternative="greater") # here d is the

effect size, n is the proposed sample size and sig.level is alpha

The output will show that with the proposed sample size of 40, our study’s power will
be .99.

While very convenient, there is one problem with canned power analysis programs. If
your design is complex you may not find a good answer. Why? Because for complex
designs, many times there are no analytical solutions available to estimate power. In
such situations a solution can be found in Monte Carlo simulations. Considering this
course is about advanced experiment analysis techniques, let’s understand how you
can estimate power for nearly any design with simulation.

2.4 Monte Carlo Power Analysis

First, let’s quickly understand what is Monte Carlo Analysis. For many problems it
is hard to find a closed-form solution (i.e., to have a formula that you can use to find
the unknown quantity). Monte Carlo analysis is used to solve such problems. The
basic premise is the following: if we repeatedly sample from a known probability
distribution/process, we can numerically obtain approximate solutions. Let’s take the
example of the Central Limit Theorem (CLT) to understand Monte Carlo analysis. Here
we have a mathematically derived prediction to compare the simulation results.

The CLT says that if we take several random samples of size n from any distribution
with true mean µ and standard deviation σ, the distribution of the sample means will
follow a normal distribution with mean µ and standard deviation σ

√

n . Here is an R
code.

X = matrix(rnorm(10000 * 15, 5, 3), 15) # Here we are generating 10,000
samples # with 15 observations in each sample. The population has mean 5
and sd 3

drawmean = apply(X, 2, mean) # taking mean of each of the sample. We get 10000
# means.

hist(drawmean) # plot them
mean (drawmean) # check and see if the mean of means matches with the

population mean 5.

Now, you can play with sample size. Change it from 15 to 30 to 100 and see what
happens. You will notice that as you increase the sample size, the standard deviation of
the distribution of the sample means will decreases (just like what CLT predicts). Later
we will discuss how CLT helps us in forming confidence intervals around the mean.

Now let’s revisit the price vs. quantity discount study we discussed in the beginning of
this section. This is the simplest example to understand how simulation can be used to
estimate power for different sample sizes.

Again, here is the data from our discount study MeanP = 5.9, SDp = 1, MeanQ =
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4.9, SDQ = 1 If you recall from Type 1 and Type 2 error table, Power is 1− β. That is the
probability of rejecting the null when it is false (i.e., conclusion 2, reality 2). Therefore,
given values of means and SDs of our discount study, we can sample many times and
calculate the proportion of times we find that the P and Q conditions are different at
p < .05 significance level. This proportion is essentially Power. Such calculations of
power has become possible due to the availability of abundant computing power. So
here are the steps to calculate power. Assume we want to find out what would be the
power if we repeat this study with 80 participants in each condition.

1. Draw a sample of 80 observations from a normal distribution with mean = 5.9
and SD =1 (i.e., P condition)

2. Draw a sample 80 observations from a normal distribution with mean = 4.9 and
SD =1 (i.e., Q condition)

3. Run a T_test and if you observe p < .05, then count it as 1 else count it as 0

4. Repeat steps 1-3, 1000 times.

The proportion of times you find p < .05 in 1000 iterations, is the Power estimate for
sample size of 80. You can repeat this process for any sample size. The following is a
python code that calculates power for sample sizes between 20 and 100:

%matplotlib inline

import numpy as np
import pylab as plt
from math import sqrt
from scipy import stats
import random
from decimal import Decimal
from __future__ import division
import time

mean1= 5.9 # condition 1 mean
mean2= 4.9 # condition 2 mean
sd1 =1 # condition 1 SD
sd2=1# condition 2 SD
alpha=.05 # significance level
iter = 500 # number of samples to interate
rep=[] # ignore these are placeholders
sample_n=[]# placeholders

# this calculates Cohen‘s d
def cohen_d(mean1,mean2,sd1,sd2):

return ((mean1 - mean2) / (sqrt((sd1 ** 2 + sd2 ** 2) / 2.0)))

for i in range (20,100,10):# sample size range with increment of 10
#print(’Sample Size:’,i)
millis = int(round(time.time() * 1000))
random.seed(millis*i)# to ensure random draws
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count = 0;
n=i;

for g in xrange(1,iter):
random.seed(int(round(time.time() * 1000))*g)
rand1=random.randint(445, 200000)
np.random.seed(seed=rand1*g)

# drawing samples from condition P
y1 = np.random.normal(mean1,sd1, size=n)

# drawing samples from condition Q
y2 = np.random.normal(mean2,sd2, size=n)

y = np.concatenate((y1, y2))
t_stat1= stats.ttest_ind(y1,y2,equal_var = False)
b = np.array(t_stat1)
tval,p_val = np.hsplit(b,2)
if p_val < alpha:

count = count+1

f1=count/iter
print("Sample Size:%s, Power:%s)" %(i,f1))
rep.append(f1)
sample_n.append(i)

plt.title("Cohen\’s d: %s" %(cohen_d(mean1,mean2,sd1,sd2)))
plt.ylabel("Power",fontsize=12,fontweight=’bold’)
plt.xlabel("Sample Size per condition",fontsize=12,fontweight=’bold’)
plt.scatter(sample_n,rep,color=’r’)
plt.plot(sample_n,rep)
plt.show()

The output shows:

Figure 2.1: Power Simulation for reduced effect size cell design

Earlier we discussed what influences the power of a study. One factor was the sample
size. As you can see in this figure as sample size increases, power increases. Simulations
also help us understand how effect size changes power. Let’s imagine that the SDs of
our discount study are 2 instead of 1 .i.e., MeanP = 5.9, SDp = 2, MeanQ = 4.9, SDQ = 2.
This changes our effect size (Cohen’s d) from 1 to .5. The following is a figure of
simulated power with this information
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Figure 2.2: Power Simulation for 2 cell design

As you can see that as effect size decreases you need a higher sample size to achieve the
same power that you achieved with a smaller sample size and high effect size. Compare
the power in figure 2.1 and figure 2.2 for the same sample sizes. As an example, for a
sample size of 20 when Cohen’s d changes from 1 to .5, the power of your future study
will drop from .9 to .3.

2.4.1 2x2 ANOVA Power Simulation

One of the most commonly used experiment design is the 2x2 between-participants
design where data is usually analyzed by ANOVA. Here is a power simulation code
for such designs

## ANOVA-Monte Carlo Power Simulation
%matplotlib inline

import pandas as pd
import numpy as np
import pylab as plt
from math import sqrt
from scipy import stats
import random
from decimal import Decimal
from __future__ import division
import time
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm

mean_A1B1= 5.9
sd_A1B1 =2.2

mean_A1B2= 5.1
sd_A1B2 =1.8

mean_A2B1= 4.9
sd_A2B1 =1.2

mean_A2B2= 5.4
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sd_A2B2 =1.8

alpha=.05 # significance level
# number of samples to interate
iter = 1000
# ignore these are placeholders
rep_a=[]
rep_b=[]
rep_ab=[]
sample_n=[]# placeholders

for i in range (5,100,10):# sample size range with increment of 10
#print(’Sample Size:’,i)
millis = int(round(time.time() * 1000))
random.seed(millis*i)# to ensure random draws
count_a = 0
count_b = 0
count_ab =0
n=i;
x1 = np.zeros([n,1]); x2 = np.ones([n,1]);
x3 = np.ones([n,1]); x4 = np.zeros([n,1]);

X1 = np.hstack((x1, x2));
X2 = np.hstack((x1,x4));
X_1= np.concatenate((X1, X2));

X3 = np.hstack((x3, x2));
X4 = np.hstack((x3, x4));

X_2 = np.concatenate((X3,X4))

factor= np.concatenate((X_1,X_2))
for g in xrange(1,iter):

random.seed(int(round(time.time() * 1000))*g)
rand1=random.randint(445, 200000)
np.random.seed(seed=rand1*g)

y1 = np.random.normal(mean_A1B1,sd_A1B1, size=n)
y2 = np.random.normal(mean_A1B2,sd_A1B2, size=n)
y3 = np.random.normal(mean_A2B1,sd_A2B1, size=n)
y4 = np.random.normal(mean_A2B2,sd_A2B2, size=n)
depv= np.concatenate((y1,y2,y3,y4))
depv=depv[:,None]

data = np.hstack((depv,factor))

df = pd.DataFrame(data, columns=[’dv’, ’A’, ’B’])
formula = ’dv ~ C(A) + C(B) + C(A):C(B)’
lm = ols(formula, df).fit()
#print anova_lm(lm)
jj= np.array(anova_lm(lm))
a_pval= jj[0,4]
if a_pval < alpha:

count_a = count_a+1
b_pval= jj[1,4]
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if b_pval < alpha:
count_b = count_b+1

ab_pval= jj[2,4]
if ab_pval < alpha:

count_ab = count_ab+1
fa=count_a/iter
print("Sample Size:%s, Power for main effect ’A’:%s)" %(i,fa))
fb=count_b/iter
print("Sample Size:%s, Power for main effect ’B’:%s)" %(i,fb))
fab=count_ab/iter
print("Sample Size:%s, Power for main effect ’A*B’:%s)" %(i,fab))

rep_a.append(fa)
rep_b.append(fb)
rep_ab.append(fab)
sample_n.append(i)

#plt.title("Cohen\’s d: %s" %(cohen_d(mean1,mean2,sd1,sd2)))
plt.ylabel("Power",fontsize=12,fontweight=’bold’)
plt.xlabel("Sample Size per condition",fontsize=12,fontweight=’bold’)
plt.scatter(sample_n,rep_a,color=’r’,label=’A’)
plt.plot(sample_n,rep_a,color=’r’)

plt.scatter(sample_n,rep_b,color=’k’,label=’B’)
plt.plot(sample_n,rep_b,color=’k’)

plt.scatter(sample_n,rep_ab,color=’g’,label=’A*B’)
plt.plot(sample_n,rep_ab,color=’g’)
plt.legend(loc=4)
plt.show()

2.5 The fallacy of post-hoc Power Analysis

Until now we discussed how power analysis uses an existing study (or studies) to help
us estimate the sample size for a future study. There is another (often contentious)
issue of using power analysis to interpret an existing study’s results. Post-hoc power is
essentially estimating the (post-hoc) power of an already concluded study. Going back
to our discount study example, this would mean estimating what was the power of
that study. Why is such a power analysis contentious? The issue becomes contentious
when such a power analysis is used to interpret non-significant study results.

Let’s assume in our discount study, our results showed that p = .4 i.e., we were unable
to reject the null hypothesis indicating that there is no difference between price and
quantity discount conditions. Now if we use power analysis to understand why we were
unable to reject the null hypothesis, we are committing a logical fallacy. Why? Because
in these situations, power is an inverse function of observed p values (see Hoenig and
Heisey (2001) for further detail). So we gain no new knowledge by calculating power of
statistically non-significant results. Bottom line, use power analysis to estimate sample
size of future studies.
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Further Readings

If you want to explore this topic further, there are countless excellent articles and books.
Here are some (not an exhaustive list): Maxwell et al. (2008), Liu (2013).



Chapter 3

Outliers

“An outlier is an observation which deviates so much from the other observations as to
arouse suspicions that it was generated by a different mechanism” - Hawkins (1980)

Outlier detection has a long history. Empirical observations, especially responses
collected from humans, invariably contain outliers. Most of the commonly used
methods made assumptions about the underlying mechanism that generates the data.
They assumed data to be normally distributed and focused on univariate data. There
exists more than 100 such methods. One way to understand these methods is divide
them into categories of robust vs. non-robust. Let’s start with non-robust methods.

One of the most commonly used method in social sciences (particularly in psychology
and consumer research) is removing univariate observations that are more than 3
standard deviations away from the mean (the 3SD rule). What is the rationale behind
this method? We know from the properties of normal distribution that the probability
of points lying beyond 3SD limit on either side of the mean is less than 0.5% as the
figure on the next page shows 1.

Why is this 3SD rule non-robust and what is the problem with this method? The
value of the mean (M) and standard deviation (SD) used to detect outliers are affected
by the very same outliers that one is trying to remove. Let’s take a simple example.
Assume we collected data from 6 respondents about their happiness on a 1-100 scale.
The following are their ratings:

{20, 25, 30, 12, 15, 95}

This data has M = 32 and SD = 31.14. Now while we can see that 95 is an outlier, we
can’t remove it using the 3SD rule because the presence of 95 has changed the M and
SD.

3.1 So what are better alternates to using the 3SD rule?

There are many robust alternates to using the 3SD rule. Here we discuss two of them.

1Credit:Wikipedia
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Figure 3.1: Normal Distribution

3.1.1 Median Absolute Deviation

The Median is very insensitive to the presence of outliers which means adding outliers
does not change the median. In general, insensitivity of any estimator (mean, median
etc.) to outliers is measured by their breakdown point. So first let’s understand what is
the breakdown point.

Breakdown point: The estimator’s breakdown point is the maximum percentage
of observations that can be completely contaminated (i.e., equal to infinity)
before making the estimator to result in a false value. For example, when a
single observation has an infinite value, the mean of all observations becomes
infinity. This shows that the breakdown point of mean is 0. The median value on
the other hand has breakdown point of .5, which means we can have up to 50%
observations that are infinity (∞) before median goes completely haywire. This
makes median preferable to mean. The following example highlights this

For dataset [2, 2, 5, 8, 8, 9, 9, 10, 22, 28, 36] the median is 9.

Now if we multiply the last 5 values of this dataset by 1000. The dataset will be
[2, 2, 5, 8, 8, 9, 9000, 10000, 22000, 28000, 36000] but the median will again be 9.

This property of the median makes outlier detection based on Median Absolute
Deviation (MAD) a very good alternate to the 3SD rule.
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First let’s understand what is MAD. It is the median of absolute deviations from the
median. Formally,

MAD = median(∣xi −medianj(xj)∣)

Let’s take an example to understand this. If our data is [2, 2, 3, 5, 2, 7], then the median
(i.e., medianj(xj)) of this data is 2.5.

∣xi − 2.5∣ for each observation will be [∣2− 2.5∣, ∣2− 2.5∣, ∣3− 2.5∣, ∣5− 2.5∣, ∣2− 2.5∣, ∣7− 2.5∣] =
[0.5, 0.5, 0.5, 2.5, 0.5, 4.5]. The median of these values is MAD. So for our dataset MAD
= 0.5.

Similar to the median, MAD also has a breakdown point of 0.5 which makes it better
than sample standard deviation in the presence of outliers. If the underlying distribution
in the absence of any outlier is assumed to be normal then MAD is multiplied by 1.4826.
The rule for detecting outliers is:

X > Median + 3 ∗ 1.4826 ∗ MAD

Or

X < Median − 3 ∗ 1.4826 ∗ MAD

The following code removes outliers using the MAD

from numpy import median, absolute

def mad(data, axis=None):
return 1.4826*median(absolute(data - median(data, axis)), axis)

data=np.array([-30,1, 4, 8, 8, 3, 4, 5,9, 90])

mad = mad(data)
ul = median(data)+3*1.4826*mad
ll = median(data)-3*1.4826*mad
idx= np.where((data > ul)|(data<ll))

print (’median absolte deviation’, mad)

print (’outlier locations:’, np.ndarray.flatten(np.array([idx])+1))

print (’outliers’, data[(data > ul)|(data<ll)])

data_clean = data[(data < ul)&(data>ll)]

print (’clean data’,data_clean)

## Output
>> (’median absolte deviation’, 5.1890999999999998)
>> (’outlier locations:’, array([ 1, 10]))
>> (’outliers’, array([-30, 90]))
>> (’clean data’, array([1, 4, 8, 8, 3, 4, 5, 9]))
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3.2 Boxplot

Tukey proposed boxplots in 1960’s. Boxplots are non-parametric, which is a fancy way
of saying they don’t make any assumptions about the underlying distribution that
generated the data (it could be normal, gamma, cauchy, it doesn’t matter). Let’s create
a boxplot to understand what it is

from pylab import *
data =[2,2,8,9,9,10,14,28]
boxplot(data,0,’rD’) # here ’rD’ changes the color and shape of outliers
show()

Figure 3.2: Boxplot

There are different parts of this boxplot. Let’s start with the redline. It is the median
(50th percentile) of the data. The box starts at the first quartile (25th percentile of data)
and ends at the third quartile (75th percentile of data). The difference between the first
and the third quartile is also called the interquartile range or IQR. So within the box
lies the middle 50% of the data. In our sample dataset these values are:

Median: 9.0

1st quartile: 6.5

3rd quartile: 11

IQR: 11 - 6.5 = 4.5

The lower black whisker shows the point within 1.5 x IQR below the 1st quartile. In our
data this will be the 6.5 (1st quartile) - 1.5 x 4.5 (IQR) = -.25. So the smallest data point
between 6.5 and -.25 would be 2.

The upper black whisker shows the point within 1.5 x IQR above the 3rd quartile. In
our data this will be 11 (3rd quartile) + 1.5 x 4.5 (IQR) = 17.75. So the largest data point
between 11 and 17.75 would be 14.

The red diamond shows the outlier in our data.
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3.2.1 How can one determine outliers in boxplot?

There are 2 rules. One for clear outliers and the other for suspected outliers.

Clear Outliers: Data points that fall 3 x IQR or more above the third quartile or 3 x
IQR or more below the first quartile. If we look at out data, this limit is 3 x 4.5 = 13.5.
The third quartile is 11 so any point above 13.5 + 11 = 24.5 would be a clear outlier. If
you see our dataset, 28 would qualify as a clear outlier.

Potential Outliers: They are 1.5 x IQR or more above the third quartile or 1.5 x IQR or
more below the first quartile. In our data set, 1.5 x IQR value above the third quartile
would be 11 + (1.5 x 4.5) = 17.75 and 1.5 x IQR value below the first quartile would be
6.5 - (1.5 x 4.5) = -.25.

Would the 3SD rule work? Our dataset also highlights why many times the
3SD rule is not a good choice to remove outliers. The sample mean of our data
is 10.25 and the sample standard deviation is 7.69. According to the 3SD rule
we can consider a data point an outlier only if it is more than 10.25 + 3 x 7.69 =
33.32 or less than 10.25 - 3 x 7.69 = -13.12. Since our outlier 28 has influenced the
sample mean and SD, we can not label 28 as an outlier.

Modified Boxplot Rule: Carling (2000) proposed a modification to the boxplot rule.
This modification was motivated by the fact that sample size influences which observa-
tions are considered outliers. According to this modification an observation X is an
outlier if

X > Median + k ∗ IQR

Or

X < Median − k ∗ IQR

Where if N is the sample size then

k = 17.63N − 23.64
7.74N − 3.71

Here is a code that removes outliers using Carling’s modification

%matplotlib inline
from pylab import *
import numpy as np
import seaborn as sns

data =np.array([-30,-24,2,2,5,8,8,9,9,10,22,36,44])

iqr = np.percentile(data,75)-np.percentile(data,25)
median = np.median(data)
k= (17.63*len(data)- 23.64)/(7.74*len(data)-3.71)
ul = median+(k*iqr)
ll = median-(k*iqr)
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idx= np.where((data > ul)|(data<ll))

print ("outlier locations:", np.ndarray.flatten(np.array([idx])+1))
print ("outliers", data[(data > ul)|(data<ll)])
data_clean = data[(data < ul)&(data>ll)]
print ("clean data",data_clean)

here is the output.

>> ((’outlier locations:’, array([ 1, 2, 12, 13]))
>> (’outliers’, array([-30, -24, 36, 44]))
>> (’clean data’, array([ 2, 2, 5, 8, 8, 9, 9, 10]))

3.3 Outliers in Multivariate data

Up till this point, our discussion of outliers has been confined to finding outliers in
univariate data. However, many times the data is multivariate (e.g., repeated measures,
multiple dependent variables, covariates etc.) so next we will see how we can detect
outliers in a multivariate dataset.

The most common question that appears in the context of multivariate outliers is why
can’t we just use univariate methods on each of the variables and detect outliers? Why
do we need a separate set of methods? Let’s take an example to understand why.
Imagine we have data on two variables, age and systolic blood pressure. If these data
points are coming from people in the age group of 16 to 75, a systolic blood pressure
of 145 may not appear to be an outlier on its own as this number increases with age
and in our sample we may find many people having this or a higher number. So we
may not be able to identify a 155 reading as an outlier if we search for outliers using
univariate methods. However, if we consider age and systolic blood pressure together,
we realize that this datapoint is associated with someone who is 16 years old. While a
155 systolic blood pressure is not uncommon among 45-55 year olds, it is certainly an
outlier among 16 year olds. As this example highlights we need methods that uses all
the relevant variables to detect outliers.

How can we find outliers in multivariate settings? As you would imagine, a large
body of literature exists on this topic. Historically, the major shift in this areas has
been the use of robust methods to detect outliers in such datasets. So we will discuss
mostly robust methods but to give you an intuitive understanding of how outliers
are detected in multivariate datasets, we will use simpler non-robust methods. Let’s
take the non-robust example of univariate data. As we discussed earlier, standard
deviation is used as a proxy for distance: high SD+µ → high distance thus, an outlier.
In multivariate data, Mahalanobis distance can be used to identify an outlier. First, let’s
take a simple example to learn how to calculate Mahalanobis distance. Continuing our
example of age and systolic blood pressure, if our data is as follows
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Person # Age Systolic Blood Pressure

1 16 155
2 20 120
3 18 125
4 45 160
5 50 150
6 60 160

Just by looking at the data, person 1 appears to be an outlier. However, our goal
is to find an outlier using some form of distance so we can extend this method to
data with hundreds of observations and with more than 2 variables. One option we
have is to calculate the Euclidean distance of each person from the center (centroid)
of this sample. So what is the center of this sample? It is simply the average of
age and the average of systolic blood pressure i.e., 34.83 and 145.00. So if we want
to measure the distance of person 2 (P2) from this center, we will use the formula
de(P2, center) =

√
(20− 34.83)2 + (120− 145)2 = 29.06.

Person # Euclidean Distance (de) from the center

1 21.32
2 29.06
3 26.13
4 18.12
5 15.97
6 29.30

Clearly, this method does not pick the right outlier (person 1). He doesn’t appear that
far from the center. Why is the simple Euclidean distance not a good way to measure
distance? First, the Euclidean distance is very sensitive to the scales of the variables
(age and systolic BP). In standard geometric measurements, all variables are measured
in the same units of length (meter, inches etc.). But with the kind of data we use it is
rarely the case. Our variables measure constructs where scales are not comparable (e.g.,
age, emotional reaction, amount spent etc.).

Second, the Euclidean distance completely ignores correlated variables. In our hypo-
thetical case, the Euclidean distance has no way of understanding correlation between
age and systolic BP.

3.3.1 Mahalanobis Distance based methods

The Mahalanobis Distance addresses some shortcoming of Euclidean distance. The Ma-
halanobis distance takes into account the covariance among the variables in calculating
distances. With the Mahalanobis distance the problems of scale and correlation inherent
in the Euclidean distance are no longer an issue. Here is a geometric explanation: when
using Euclidean distance, the set of points equidistant from a given location (e.g., the
centroid) form a sphere. The Mahalanobis distance stretches this sphere to correct for
the respective scales of the different variables and to account for correlation among
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variables 2.

The formula for calculating the Mahalanobis distance shares a lot of similarity with
the Euclidean distance formula. The Euclidean distance can also be written in the
form of a matrix dot product as de(x, y) =

√
(x − y)T(x − y). The Mahalanobis distance

is dM(x, y) =
√

(x − y)TS−1(x − y). Here S−1 is the inverse of the variance/covariance
matrix (in some books it is denoted as ∑−1).

Let’s use this formula to calculate distance in our age systolic BP example. First, we
need to estimate the variance/covariance matrix of our data. It is

Age Systolic Blood Pressure
age 364.97 225
sbp 225 320

Here the diagonal values are variance and off diagonal covariance. Using basic matrix
algebra it’s inverse is

S−1 = (0.0048 −0.003
−0.003 0.0055

)

if c is the center with values 34.83 and 145 (as we calculated earlier) then (p1 − c) =
(−18.83 10.0). Here p1 is the first person. It is quite straightforward to calculate the
Mahalanobis distance from these values. For person 1, the Mahalanobis distance from
the center is

dm(p1, c) =
¿
ÁÁÀ(−18.83 10.0)(0.0048 −0.003

−0.003 0.0055
)(−18.83

10.0
) = 1.88

Similarly, we can calculate the distance of other people from the center. The following
table compiles these values

Person # Mahalanobis Distance (dm) from the center

1 1.88
2 1.41
3 1.13
4 0.83
5 .85
6 1.31

As this table shows, person 1 is most distant from the center. Is he an outlier? In a
large sample (ours was very small with just 6 values), Mahalanobis squared distances
(i.e., d2

m) follow a Chi squared distribution. This makes our life much easier, just like
in the univariate case we can set the threshold to p < .001 or any other value, find
the critical value from the chi square table and classify the points that have squared
Mahalanobis distance more than this critical value. So far everything looks good. But
as we discussed with univariate outlier detection, such non-robust methods are not
optimal for multivariate outlier detection as well. Why? This method breaks down if
instead of lone wolf outliers you have a cluster of outliers. The estimation of mean and
covariance is influenced by the cluster of outlying points which results in the distance

2see this post for a detailed explnation : https://chrisjmccormick.wordpress.com/2014/07/21/
mahalanobis-distance/

https://chrisjmccormick.wordpress.com/2014/07/21/mahalanobis-distance/
https://chrisjmccormick.wordpress.com/2014/07/21/mahalanobis-distance/
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of the outlying point from the mean appearing small (also known as masking). So
what’s the right method?

3.3.2 Robust outlier detection methods

There are many robust alternates. We will focus on Minimum Covariance Determinant
(MCD) proposed by Rousseeuw (1984)(the fast-MCD algorithm that implements it was
developed by Rousseeuw and Driessen (1999)).

If your data has n observations and p variables and assuming n > 2p. The first step is
the user input of a number h , which should be n+p+1

2 < h < n.

1. Then the algorithm selects h-sized subsamples of n. Intuitively, the value h can
be perceived as the minimum number of points that must not be outliers (e.g., if
n = 50 and you think at least 60% of these points are not outliers then h can take
any value between 30 and 49. If you chose h = 35 then subsamples of size 35 are
selected).

2. For each subsample, the determinant of its covariance matrix is calculated.

3. The subsample with the smallest determinant is chosen. Intuitively, it is the
tightest cluster of h points.

4. The mean and covariance matrix of this optimal subsample is used to calculate
the Mahalanobis distance of every point.

5. The last step is the familiar part of comparing each point’s Mahalanobis distance
with the critical values of the chi square distribution and labeling those points as
outliers whose Mahalanobis distance is more than the critical values.

This approach is less susceptible to masking effects. However, it is quite easy to
see why finding MCD via this algorithm is very hard. If n = 50 and h = 35 then it
requires calculating the determinant of potential (50

35) = 2250829575120 combinations.
The solution is Fast MCD, which is implemented in most statistical programs (if you
are interested in knowing how it works read Rousseeuw and Driessen (1999))

3.3.3 Working with data

R provides some of the best packages to identify outliers in multivariate data. We will
use 2 such packages robustbase and chemometrics. Let’s use our age and systolic BP data
to see how you can find outliers.

require(robustbase)
require(chemometrics)
Age=c(16,20,18,45,50,60)
Systolic_BP=c(155,120,125,160,150,160)
vect=cbind(Age,Systolic_BP) # combine age and Systolic BP columns
x.mcd=covMcd(vect, alpha=.5) # calculate the Minimum Covariance Determinant

(MCD) #estimator via the Fast MCD. Here alpha determines the values of h.
# roughly h= sample size*alpha

x.mcd$mah # prints robust mahalanobis distance
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x.mcd$mcd.wt # prints ‘‘outlyingness’’ of observations. here 0 means outlier
#and 1 inlier

drawMahal(vect,center=x.mcd$center,covariance=x.mcd$cov,quantile=0.975,pch=13)
# draws robust 97.5

sum(x.mcd$mcd.wt == 0) #counts number of outliers
sum(x.mcd$mcd.wt == 1) # counts number of inliers
new<-data.frame(x.mcd$mcd.wt,vect) # creates a new data set where 0, 1 outlier

scores are in the first column
datNew <- new[-which(x.mcd$mcd.wt == 0), ] # this create a new dataset which

excludes the outliers i.e. it is your clean data

Here is the output:

> 10.7984320 0.6151340 0.5078648 1.0925750 0.2893012 0.6335340 # Mahalanobis
distance

> 0 1 1 1 1 1 # Outlier weight, first one is an outlier

and the next figure captures the 97.5% tolerance ellipse.

Figure 3.3: MCD Outlier



Chapter 4

Confidence Interval, Bootstrapping,
and Effect Size

4.1 Confidence Interval

Perhaps you heard this statement that confidence intervals are always preferred over
point estimates. Why is this statement true? A simple answer is that if you run any
study you obtain one value of sample statistic (say mean M1) out of potentially infinite
values which you could obtain if you keep running your study infinite number of times.
This brings up the question of how much faith can I have in M1 that you obtained from
your one study? Let’s imagine I have access to the true population mean µ. In this
event, I can compare your M1 with µ and make an educated guess about how correct
you were in your estimate of M1. However, there is a little problem, we invariably
never know µ. This makes the task of understanding how close your obtained M1 is to
µ very difficult. This is where the Confidence Interval (CI) comes to the rescue. One
way to think of the 95% CI obtained from a study is as the interval in which the true
population parameter actually lies. Let’s take a specific example, if your M1 = 4.5 and
the 95% CI is [3.25, 5.75] then the CI simply shows that with 95% certainty we can say
that the true value µ lies in that interval 1.

Calculation of the confidence intervals are based on the central limit theorem. We will
try to understand this by taking the example of calculating the confidence interval
around sample means. The central limit theorem says that the sample mean is normally
distributed in large samples (generally of size > 30). This implies that if we draw
enough samples and obtain means of each of those samples, these means will be
normally distributed. Formally, if X̄ is the sample mean then

X̄ ∼ N(µ,
σ√
n
).

This means that sample means are distributed normally with mean µ (i.e., true popula-
tion mean) and standard deviation σ

√

n (here σ is the population standard deviation).

1There is a logical fallacy in saying that there is 95% probability that the true mean µ would fall in this
interval. This statement would imply that the true mean is not a constant (in reality it is a constant). If it
is a constant then its probability to fall in any interval can either be 0 (no it will not fall) or 1(yes it will
fall). See Cumming and Finch (2005).
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The fun part is that we don’t know µ and σ, we only know that X̄ is distributed
normally. But we know a lot about how the normal distribution works. For instance,
the sample mean can be rescaled to a standard normal:

X̄ − µ

σ/
√

n
∼ N(0, 1)

It is quite easy to find out the the interval that contains the standard normal variable
with 95% probability. We know from the properties of standard normal distribution
that this interval is [-1.96, 1.96]. This means

Pr(−1.96 < X̄ − µ

σ/
√

n
< 1.96) = .95

Simple algebraic changes would yield

Pr(X̄ − 1.96
σ√
n
< µ < X̄ + 1.96

σ√
n
) = .95

if we use s (sample standard deviation) as a proxy for σ then 95% confidence interval is

[X̄ − t.95(n − 1) s√
n

, X̄ + t.95(n − 1) s√
n
)].

s
√

n is also known as standard error. t.95(n − 1) is at α = .05 level critical value of t
distribution with n − 1 degrees of freedom. As this formula shows, the width of the CI
is inversely proportional to n (as sample size increases, width decreases) and directly
proportional to the sample standard deviation (s).

4.1.1 Caution with the CI

1. Due to the Central Limit Theorem, the sample size has to be large (i.e., n > 30).

2. When the sample size is 8 to 29, use a normal probability plot to see if the data
comes from a normal distribution. If it does not violate the normality assumption,
use the confidence interval.

4.2 Effect Size

We briefly discussed the concept of effect size in our discussion of Power analysis and
sample size determination. Effect size is essentially a way to quantify the difference
between two groups. Revisiting our example of the price and quantity discount study,
effect size would quantify how much willingness to buy increases with price discount
compared to quantity discount. Since a study can have any other scale to measure
willingness to buy (e.g.,1-7, 1-10, 0-100), effect size standardize the difference so results
can be compared across different studies.

Historically, effect size appeared in meta analysis, however, it is crucial for any empirical
investigation.
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4.2.1 A Simple Example

One of the simplest ways to understand effect size is to consider Cohen’s d. If mean
and standard deviation of group 1 is x̄1, s1 respectively and group 2 is x̄2, s2. Sample
size of group 1 and group 2 is n1 and n2 respectively then Cohen’s d is

d = x̄1 − x̄2

s

where s is the pooled standard deviation

s =

¿
ÁÁÀ(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

As these formulae show, the calculation of effect size is very straightforward where
unlike power we always have a formula. Effect size is always unit independent.

4.2.2 Effect Size for factorial ANOVA

If you have a standard 2 x 2 between participants design then there are several options
to calculate effect size. Here we will discuss one which can be computed by hand. It
is partial η2 (η2

p). Let’s assume we have Gender and Condition as our independent
variables and the following is an AVOVA table.

Df Sum Sq(SS) Mean Sq F value Pr(>F)
Condition 2 21715.02 10857.51 1.76 0.2078
Gender 1 10820.59 10820.59 1.76 0.2064
Condition X Gender 2 81979.56 40989.78 6.65 0.0093
Residuals/Error 14 86287.78 6163.41

η2
Pcondition =

SScondition

SScondition + SSerror
= 21715.02

21715.02+ 86287.78
= 0.2

η2
Pgender =

SSgender

SSgender + SSerror
= 10820.59

10820.59+ 86287.78
= 0.11

η2
Pcondition∶gender =

SScondition∶gender

SScondition∶gender + SSerror
= 81979.56

81979.56+ 86287.78
= 0.48

4.2.3 Effect Size for categorical data

Imagine you had 200 people who were randomly assigned to condition1 or condition2.
In each condition they can choose from brand1, brand2 or brand3. Here are the results

Brand1 Brand2 Brand3
Condition 1 30 10 60
Condition 2 35 30 35
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χ2 test provides the following results: χ2(2) = 16.963, p < .0002. The effect size in such
situations is Cramer’s V where

V =
¿
ÁÁÀ χ2/n

min(k − 1, r − 1) .

In our example, n = 200, k = 3 and r = 2 therefore

V =
¿
ÁÁÀ χ2/n

min(k − 1, r − 1) =
¿
ÁÁÀ 16.963/200

min(3− 1, 2− 1) =
√

0.084
1

= .291

Here is an R code that computes Cramer’s V

require(lsr)
condition1 <- c(30, 10, 60)
condition2 <- c(35, 30, 35)
X <- cbind( condition1, condition2 )
# To test the null hypothesis, we would run a chi-square test:
chisq.test(X)
# Now we calculate Cramer’s V:
cramersV( X )

4.3 Confidence Interval around Effect Size

From our discussion so far, Effect size just like the mean is a point estimate (i.e., it is
just one value), it provides no idea about variability if a similar study was repeated. In
other words, point estimate of effect size does not provide us any information about
the range that may cover the true population effect size.

Just like the above discussion of confidence interval of means, now we have to under-
stand how we can create 95% confidence interval around effect size. For means the
process of applying confidence interval around mean estimate is quite simple since
we use the common t distribution. However, for effect size we use the non-central t
distribution 2. For any two independent group t-test, you get t value and degrees of
freedom. If the non-centrality parameter for this t values and df is ncp (if you want
to learn how to calculate it by hand see 3 ), then the 95% confidence interval around
Cohen’s d is

P( ncpl√
n1n2

n1+n2

≤ d ≤ ncpu√
n1n2

n1+n2

) = .95.

2The noncentrality parameter is the normalized difference between µ0 and µ. The noncentral t
distribution shows how the t test statistic is distributed when the alternative hypothesis is true (e.g., when
µ0 ≠ µ).

3David C. Howell’s note on Confidence Intervals on Effect Size: http://tinyurl.com/q6zsq6g

http://tinyurl.com/q6zsq6g
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Here ncpl and ncpu are lower and upper cutoff of the non-centrality parameter.

Most of the time you won’t have to perform these calculations by hand, we will use an
R code to understand how to do this. If we look at the results of our price and quantity
discount study, we find that n1 = 30, n2 = 30, MeanP = 5.9, SDp = 1, MeanQ = 4.9, SDQ =
1, t = 3.8730. From above formulae Cohen’s d =1 (from Cohen’s d formula). Now
let’s calculate 95% CI around this point estimate (first install MBESS and compute.es
packages in R):

require(MBESS)
d = 1 # Cohen’s d
n1 = 30 # Sample Size Price Condition
n2 = 30 # Sample Size quantity Condition
jj =conf.limits.nct(ncp=3.8730, df=58, conf.level=.95) # calculates lower and

upper limits on ncp

jj$Lower.Limit/sqrt(n1*n2/(n1+n2)) # Lower bound on Cohen’s d
jj$Upper.Limit/sqrt(n1*n2/(n1+n2)) # Upper bound on Cohen’s d

or you can simply run the following code with means,(m.1=5.9, m.2=4.9), sample
sds(sd.1=1, sd.2=1), and sample sizes(n.1= 30, n.2= 30):

require(compute.es)
mes(m.1=5.9, m.2=4.9, sd.1=1, sd.2=1, n.1=30, n.2=30, level = 95, cer = 0.2,

dig = 2, verbose = TRUE, id=NULL, data=NULL) #Calculates Cohen’s d and its
95% confidence interval

If data is normally distributed, these CIs (around means, effect size etc.) are accurate.
However, traditionally calculated CIs are not robust to deviations from normality. So in
situations when data contains outliers that are skewing the sample mean and standard
deviation, or when data is not normally distributed a better approach is to use bootstrap
CIs for means, effect size etc. First, let’s quickly understand how bootstrapping works.

4.4 A Short introduction to Bootstraping

This is a really short introduction to Bootstrapping. But Bootstrapping is an extensive
topic. Those interested should read Efron and Gong (1983); Efron and Tibshirani (1994).
To give you a basic idea of what bootstrapping is, we use one of the simplest bootstrap
method- the percentile method.

Let’s revisit the price/quantity discount example discussed earlier. Imagine we ran a
study to find out if 20% price discount is more preferred than 20% bonus quantity. We
chose soap as our stimulus and recruited 60 participants. 30 were randomly assigned
to the price discount condition (P condition) and 30 to quantity discount condition (Q
condition). Our dependent variable was people’s willingness to buy soap on a 1-7 scale.
We found out that in the P condition the mean willingness to buy was 5.9 and in Q it
was 4.9, p < .05.

Whenever we analyze results of a study like this, our objective is not just to state
what we found in the study but also to generalize results to its parent population.
Sample statistics (mean, median, sample SD) obtained in any study are not stable, they
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change if we draw another sample. For instance, if we run another identical study on
price/quantity discount with a different sample (while keeping the sample size the
same), it is highly unlikely that we will again obtain similar mean willingness to buy.
Let’s assume that we found mean willingness to buy in P condition (MP = 5.7). In the
first trial we found MP = 5.9, in the second trial we found MP = 5.7. Now the question
comes, what is the magnitude of such fluctuations. One simple answer to this question
is running identical studies many many times and plotting sample means obtained
in each such study. As you can imagine, it is impossible to run so many studies. To
understand fluctuations, the second option is to delve into mathematical statistics and
understand properties of sampling distributions. In contrast to these two approaches
bootstrapping offers a very interesting solution.

We have 30 data points from the first trial when we obtained MP = 5.9. Let’s assume this
is our proxy population. Now resample with replacement from this proxy population.
Here is an example that illustrates this process. If X = {5.2, 3.5, 6.8, 5.1, ........} contains
all the data points from the price condition in our first trial. In resampling with
replacements, we will first randomly pick a point from X, write down its values and
put it back in X. We then pick a second point, write down its value and put it back in
X. We repeat this process for 30 times. Now we have our first bootstrap sample. We
can calculate its mean MB1

P , here B1 denotes the first bootstrap sample. Let’s assume
we repeat the whole process 10000 times. This will give us ten thousand values of mean
(MB1

P , MB2
P , MB3

P ......MB10000
P ). If we remove 2.5% of the highest values and 2.5% of the

lowest values of mean, we will get 95% bootstrap confidence interval (CI) around our
observed mean MP = 5.9.

Let’s understand this process by a simple simulation in R.

require(boot)
n= 30 # sample size
m= 5.9 # sample mean
sd = 1 # sample SD
data <- round(rnorm(n, m, sd)) # generate sample
B=10000 # number of bootstrap samples
resamples <- lapply(1:B, function(i)
sample(data, replace = T))

r.mean <- sapply(resamples, mean) # mean can be changed to median
se= sd(r.mean)
interv= mean(r.mean)+c(-1,1)*2*se
cat ("95% bootstrap confidence interval:", interv)

hist(r.mean, main="Bootstrap Mean Distribution",xlab="Bootstrap Means",
ylab="")

This code will give 95% bootstrap confidence interval (for this particular sample it was
5.74, 6.46) and print the following histogram (see figure 4.1).

To get an intuitive understanding of how bootstrap CIs around the mean change, keep
the mean (m) constant and change sample size (n) and sd in the above code. You will
notice that as you increase sample size (i.e, collect more data in your studies), the CI
becomes tighter. However, as you increase sd, the CI becomes wider.

Why bootstrap CIs are better? Bootstrap CIs are non parametric. Which means we
don’t need to make distributional assumptions about the data. Second, bootstrap CIs
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Figure 4.1: Bootstrap Means Distribution

are less susceptible to outliers. However, bootstrap CI is not a solution for small sample
size. To apply bootstrap CI, you need to have at least 20 respondents per cell.

While we used the percentile bootstrap method to understand how bootstrapping
works, this is not the most appropriate method to use in actual CI calculations. Bias-
Corrected-and-Accelerated (BCa) method is more appropriate. Those interested in
knowing how it works, read Efron (1987).

4.5 Bootstrap CI around Effect Size

We will use the bootES package of R to estimate CI’s around effect size. It is strongly
recommended that you read Kirby and Gerlanc (2013) before using these codes.

This examples uses a very simple data where females and males were asked to rate
how much they like cheese pizza on a 1-10 scale. You can replace female, male with
any manipulation you use in your studies.

require(bootES)
gender=c("f","m","f","m","f","m","f","m","f","m","f","m","f","m","f","m","f","m","f","m")
response=c(10,2,8,4,2,4,8,2,6,4,8,6,1,5,7,2,8,3,9,7)

data = data.frame(gender,response)

bootES( data, data.col = "response", group.col = "gender",
contrast = c("m", "f"), effect.type = "cohens.d",ci.conf = 0.95,

R=10000 ) #here R= 10000 means the code is generating 10000
bootstrap samples

The output shows that the effect size (Cohen’s d) for this data is 1.159 and 95% bootstrap
CI is [.035, 2.862]. Since bootstrapping draws random samples, every time you run this
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code the CI will be slightly differently.



Chapter 5

Quantile Regression

Here is an excerpt of the gender-based achievement gap in a math study described by
Petscher and Logan (2014) that captures the essential idea of quantile regression:

It is fairly clear that math achievement should be predicted from gender rather than
the reverse. The hypothesis tested by the authors’ study was that the differences
between males and females on math achievement may vary depending on how good
the students are at math. Because females often choose not to take higher level math
courses, the gender gap may be wider at higher levels of math achievement; however,
the cut off point that will correspond to "high levels" of math achievement is unknown.
The authors chose to use quantile regression because it allows for the estimation of the
achievement gap between males and females at multiple points in the distribution of
math achievement with no selected cut off points and no constraints on the functional
form of the relation across the distribution of math achievement. Using this method,
the authors identified that the achievement gap was near zero for low levels of math
achievement, but was much larger at the higher end.

A similar situation arises when we try to understand the influence of BMI on running
speed. It is quite intuitive that BMI is predictive of running speed, but it is also true
that the relationship won‘t be as strong for the fastest runners. In other words, BMI’s
influence on running speed is different at different levels of running speed. Presumably
BMI influences speed for those who are not in the top percentile in running speed
differently from those in the lower percentile.

Both examples highlight that such questions cannot be answered by standard regression,
because it predicts average relationship (i.e., 1 unit increase in BMI reduces running
speed on an average by .25 miles/hour) as the relation is assumed to be the same for
everyone.

What’s wrong in segmenting our dependent variables and running separate linear
regression on each segment. So for the BMI example it will mean segmenting running
speed into various groups (according to its unconditional distribution) and then running
separate linear regressions on them. Why can’t we do that? The simple answer: any
truncation of this sort will lead to sample selection problems where it will be hard to
consider resulting subgroups of data as randomly selected. If you are interested in
exploring this point further, please read Heckman‘s (1979) work on sample selection.
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5.1 What is Quantile Regression?

Warning: Unlike topics discussed so far, Quantile regression requires the un-
derstanding of some slightly advanced statistical concepts. Subsequent sections
provide some rudimentary description of such concepts. Ideally, you should read
the first 5 chapters of Hao and Naiman (2007) to gain a holistic understanding of
Quantile regression.

Classical regression (least square regression or LSR) focuses on the expectation of a
variable Y conditioned on a set of variables X, i.e., E(Y∣X). One of the main problems
with this approach is that it restricts itself to just the conditional mean.

Quantile regression on the other hand let’s us understand the conditional distribution
of Y (on X) at different locations (not just the mean).

Let’s take a simple example: if we want to study the influence of family income on SAT
scores, LSR

YSAT = β0 + β1Xincome + ε

will help us get values of β0 and β1. β1 will tell us how average SAT scores will change
for every unit change in income. However, β1 will not let us know how every unit
change in income influences SAT scores of students who are in the top 10 percentile vs.
bottom 10 percentile of SAT scores. In other words, LSR will tell us how on average
SAT scores change with change in income but will not help us understand the role
income plays in groups of worst and best SAT performers. Quantile regression can help
us answer that question. In addition, Quantile regression does not assume errors to be
homoskedastic and is less susceptible to outliers. Let’s understand what are quantiles.

5.1.1 Quantiles

A good starting point is the difference between mean and median.

Mean µ can be defined as

µ = arg min
c

E(Y − c)2,

which basically states that for a random variable Y, mean is the center c of a distribution
which minimizes the squared sum of deviations.

Median m also has a similar minimization property. Instead of minimizing squared
distance we can use absolute distance ∣Y − c∣ and minimize mean of ∣Y − c∣ i.e.,

m = arg min
c

E∣Y − c∣.

Applying the same line of reasoning for samples we can obtain µ̂ and m̂. Median
is a special case of quantiles (50% or .5 quantile). If we want to generalize the idea
of median to other quantiles, we need to understand CDF (Cumulative Distribution
Function).

FY (CDF) of a random variable Y provides us for a given value of y, the proportion of
the population for which Y ≤ y. Formally
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FY(y) = F(y) = Pr(Y ≤ y)
Let’s take an example. For standard normal distribution, FY(0) = .5, which means 50%
of values lie below 0. Similarly FY(1.28) = .9. More generally we say θ quantile is value
y such that Pr(Y ≤ y) = θ,∀θ ∈ [0, 1]. Therefore, FY(y) = F(y) = θ.

Quantile function (QY(θ)) is the inverse of FY.

QY(θ) = Q(θ) = F−1
Y (θ) = inf[y ∶ F(y) ≥ θ]

In words, this means θth quantile of a CDF F is the minimum (infimum) of the set of
values y such that F(y) ≥ θ. As an example FY(0) = .5 means 0 is 50th quantile because
the set that contains values with Pr[Y > 0] is large and 50th quantile is minimum of all
those values.

5.1.2 Estimating Quantile Regression

The easiest way to understand how quantile regression is estimated is to start with
simpler least square regression. LSR can be defined as a minimization problem. The
least-squares estimator finds for the parameter estimates β̂0 and β̂1 by considering
those values of the parameters that minimize the sum of squared residuals, i.e,

arg min
β0,β1

∑
i
(yi − (β0 − β1xi)2).

Extending this to median regression (a special case of quantile regression since median
is 50% or .5 quantile) is straightforward. The aim is to find the coefficients that minimize
the sum of absolute residuals (the absolute distance from an observed value to its fitted
value). The estimator solves for β̂.5

0 and β̂.5
1 by minimizing

arg min
β.5

0 ,β.5
1

∑
i
∣yi − β.5

0 + β.5
1 xi∣.

More generally for the pth quantile the minimization problem is

arg min
β

p
0 ,βp

1

p ∑
yi≥β

p
0+β

p
1 xi

∣yi − β
p
0 + β

p
1 xi∣ + (1− p) ∑

yi<β
p
0+β

p
1 xi

∣yi − β
p
0 + β

p
1 xi∣

The proportion of data points lying below the fitted line y = β̂
p
0 + β̂

p
1 x is p, and the

proportion lying above is 1 − p. In the simplest case if p = .5 then this fitted line
represents the median regression line.

The minimization problem also shows that the estimation of coefficients for each
quantile regression utilizes the weighted data of the whole sample, not just the portion
of the sample at that quantile.
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5.2 How to use and interpret quantile regression?

We will use the R package quantreg 1. Let’s use the Engle data supplied with the
quantreg package. Engel data has 2 variables food expenditure and income per house-
hold. The idea is to find out how income changes money spent on food consumption.
LSR will inform as how on an average food expenditure will change for every unit
change in income. With quantile regression, we will get βp for each quantile which
would tell us how at each quantile of food expenditure, income influences food con-
sumption.

library(quantreg)
data(engel)
fit1 <- rq(foodexp ~ income, tau = c(.1,.3,.5,.7,.9), data = engel) # tau is

quantile value, here it is from .1 to .9
summary(fit1, se = "nid") # to compute bootstrapped standard errors
plot(summary(fit1), nrow = 1, ncol = 2)

Let’s look at the output for .5 and .9 quantiles. For the .5 quantile the results show:

0.5 Quantile Coefficients

Value Std. Error t value Pr(> ∣t∣)
Intercept 81.48 25.22 3.23 .0001
income .56 .032 17.03 .00001

For .5 quantile the coefficient estimate is interpreted as the change in the median of the
response variable (foodexp) corresponding to a unit change in the predictor (income).

0.9 Quantile Coefficients

Value Std. Error t value Pr(> ∣t∣)
Intercept 67.35 24.00 2.80 .005
income .68 .028 23.82 .00001

Similar to median (i.e., .5 quantile), the .9 quantile coefficients show change in the .9
quantile of food expenditure corresponding to a unit change in the income.

Across these 2 tables the main takeaway is that unlike LSR, the coefficients are not the
same for each quantile. For .9 quantile of food expenditure, the change in income has
larger influence(.68) than at .5 quantile of food expenditure (.56).

Like R2 for LSR, it is possible to calculate the Pseudo R2 based on Koenker and Machado
(1999) at the pth quantile. The formula is

R1(p) = 1−
∑yi≥ŷi

p ⋅ ∣yi − ŷi∣ +∑yi<ŷi
(1− p) ⋅ ∣yi − ŷi∣

∑yi≥ȳ p ⋅ ∣yi − ȳ∣ +∑yi<ȳi
(1− p) ⋅ ∣yi − ȳ∣

Here is a code to calculate Pseudo R2 for Engel data

1See http://cran.r-project.org/web/packages/quantreg/quantreg.pdf and http://cran.
r-project.org/web/packages/quantreg/vignettes/rq.pdf

http://cran.r-project.org/web/packages/quantreg/quantreg.pdf
http://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf
http://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf
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require(quantreg)
data(engel)
fit0 <- rq(foodexp~1,tau=0.5,data=engel) # base model
fit1 <- rq(foodexp~income,tau=0.5,data=engel)
anova(fit1,fit0)
rho <- function(u,tau=.5)u*(tau - (u < 0))
R1 <- 1 - fit1$rho/fit0$rho
print(R1) # this is the value of Pseudo R squ at .5 quantile
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Appendix A

Some Basic Concepts

A.1 Fundamental Misconceptions about p-values

Source: These misconceptions are compiled from sources around the web

Q: If I am not able to reject the null hypothesis then it means I can accept it (example:
ruling out non-favorite/alternate accounts with null results).

A: No. You are not able to reject null hypothesis because you have insufficient evidence.
Many times with higher power you can reject any null hypothesis. So don’t use inability
to reject null (i.e., higher p values) as a way to rule out your non-favorite/alternate
accounts.

Q: p values tell me the probability that the null hypothesis is incorrect.

A: No. p values simply says that your data is more extreme if we assume H0 is true.

Q: p < .05 is an objective standard to determine statistical significance.

A: This is one of the most unfortunate misconceptions. p < .05 is just a convention.

Q: if I get p < .01 then my evidence is better than if someone got p < .05.

A: No. p values are meaningless to derive this conclusion. What you need is Effect Size.

Q: if I get p = .05 then it means that my results can be replicated 95% of the time.

A: No. p value says absolutely nothing about replication. See the next topic.

A.2 p-value and replication

Does p-value tells us anything about replicability? In its simplest definition it informs
us that if we as researchers conducted an experiment testing for the null hypothesis H0
versus H1 (i.e. the hypothesis of interest to us) with a sample size of 100 and found
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p < .05, then this would only inform us that the chances of finding the effect in the
sample when H0 was actually true in the population is only 5%. However, if H0 were
false, we cannot infer the replicability of the effect proposed by H1 from the p-value.
While conducting an experiment since a priori we do not know whether H0 is true or
not, it is difficult to infer replicability.

The problem lies in the erroneous beliefs that have cropped up in the literature for what
p-value means. For instance, there exists the completely erroneous belief that when a
researcher gets a p < .04 (against the null), it is equivalent to the probability of repli-
cating the proposed effect with a 96% probability. Cautioning against such erroneous
beliefs, Cumming (2008) states very clearly that p-value is a very unreliable measure of
replication since it varies a lot across replications: “.......if an initial experiment results in
two-tailed p = .05, there is an 80% chance the one-tailed p value from a replication will
fall in the interval (.00008, .44), a 10% chance that p < .00008, and fully a 10% chance
that p > .44.”

Killeen (2005) takes a Bayesian approach to argue that p-values are tests of the null-
hypothesis H0, not the alternate hypothesis. He argues that p(H0∣x ⩾ D) (test of the
null hypothesis, where D is the data) does not indicate (as is commonly, erroneously,
assumed) the reverse p(x ⩾ D∣H0) (which would be the test of H1). A Bayesian
approach would yield the right answer if we could calculate the former using p(H0 ∶
x ⩾ D) = p(x ⩾ D∣H0) ∗ p(H0)/p(x ⩾ D) . However, we would need to know the prior
probabilities of both H0 and D. These priors are generally unknowable leading us back
to the same quandary of not being able to conclusively reject H0 without knowing
the priors and of also not being to accept the alternate. Finally, if we knew the effect
size of the proposed effect (captured by H1) in the population then we can predict
the replicability of the experiment. However, we can only infer the effect size of the
population through the effect size that we observed in the experiment. This again
brings us back to dilemma of not knowing the priors.

A.3 Descriptive vs Inferential Statistics

Yearly batting average of Babe Ruth is a descriptive statistic. We see such numbers in
everyday life. Average rainfall in a specific city, crime rate etc.. Basically descriptive
statistics is summary of data. It is quite straightforward and easy to understand.

If we want to test theories about the nature of the world in general based on samples
taken from the world then we are dealing with inferential statistics. In other words
inferential statistics helps us infer the population’s characteristics from the sample’s
characteristics. Let’s take a very simple example. If in a sample you find that people like
red colored ice creams more than blue colored ice creams, clearly, you want to get some
idea about how this pattern of preference will generalize to population. Inferential
statistics will help you make this generalization.

A.4 PDF vs CDF

A PDF answers the question: "How common are samples at exactly this value?" A CDF
answers the question "How common are samples that are less than or equal to this
value?" The CDF is the integral of the PDF.
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for a continuous random variable X, we can define the probability that X is in [a, b] as
P(a <= X <= b) = ∫ b

a f (x)dx. (integral) Where f (x) is probability density function, which
satisfies two properties f (x) >= 0 and ∫ +∞−∞

f (x)dx = 1. a, b are real numbers. Probability
distribution function defines the probability that X <= a as P(X <= a) = ∫ a

−∞
f (x)dx
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